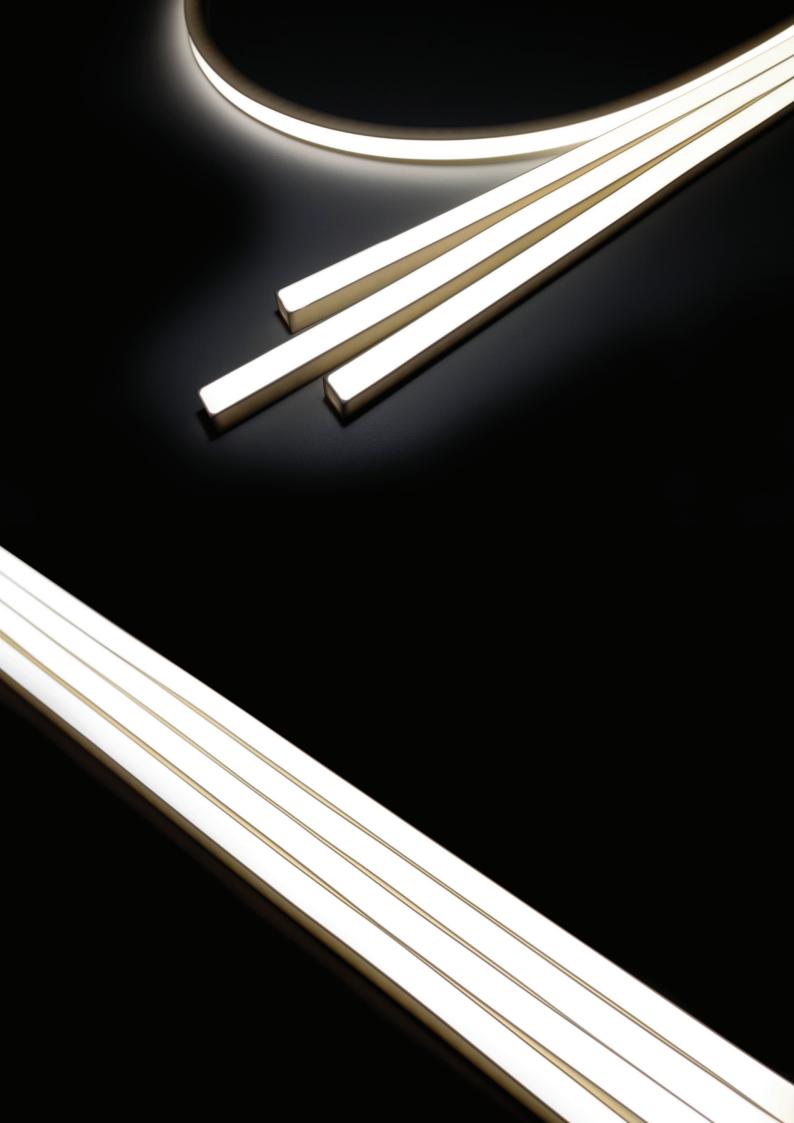


LEDS-ON™ www.ledson.eu

AquaFlex12 & AquaFlex5

MATERIAL TESTS AND DURABILITY

LEDS-ON[™] www.ledson.eu


This is a new technology with a new nanotechnology polymer. This booklet collects all possible tests performed on this Technology.

The purpose was to check the materials behavior in any difficul conditions.

As you will read, presented technology successfully passed all tests proving that our technology can be suitable for internal as well as external applications.

INDEX

Outdoor Resistance	
•	01
•	
Acid Rain Resistance ASTM G87	03
Chemical Resistance	0.4
•	04
Disinfectants Resistance	 05
Boiling Water Resistance	 06
Water Immersion Resistance	 07
Salt Spray Resistance	 80
Temperature Resistance	
Thermal Cycles	 09
Thermal Shocks	 10
Heat Resistance	 11
Abrasion And Wear Resistance	
Abrasion Resistance	 12
Impact Resistance	 14
High Pressure Washing Resistance	 15
Flame Resistance	
Ignition to Direct Flame	 16
Flammability Resistance	 17
-	
Directive & Law Compliance	
	 18
,	_

OUTDOOR RESISTANCE

NATURAL WEATHERING RESISTANCE

FLORIDA TEST

This test has the aim to check the resistance of this new technology to the exposure to external agents, by focusing on very wet environments with possible molds formation and bacterial attacks.

ARIZONA TEST

This test has the aim to check the resistance of the recent technology to the exposure to external agents, focusing on very hot and sandy environments with abrasive effect on the material.

Conditions

High humidity
High temperature

Very dry Very high temperature

Exposure Time

2 year exposure

2 year exposure

Result

NOYELLOWING - NO LOSS OF GLOSS

OUTDOOR RESISTANCE

ACCELERATED WEATHERING TESTS

XENOTEST

It is a laboratory test with the aim to simulate exactly the action of salt and rain on the material.

This test accelerates the normal exposure conditions allowing to check the resistance of the material extended in time.

It can even simulate a 10-year-exposure period.

QUV-A TEST

It is a laboratory test with the aim to simulate exactly the action of sun and condensation on the material.

This test accelerates the normal exposure conditions allowing to check the resistance of the material extended in time.

It can even simulate a 10-year-exposure period.

Conditions

UV / water spray

UV Lamp = 340 nm

Cycle

65 °C (149 °F), 102 min UV + 18 min

8 h @ 70 °C (158 °F), UV + 4 h @ 50 °C (122 °F), condensation

Exposure Time

2000 h (corresponds to 6 to 8 year outdoor natural exposure)

2000 h (corresponds to 6 to 8 year outdoor natural exposure)

Result

NO COLOR CHANGE - NO GLOSS CHANGE

OUTDOOR RESISTANCE

ACID RAIN RESISTANCE ASTM G87

ACID RAIN TEST

Extended exposure to heavy industrial air pollution can cause severe damage to surfaces. This test is carried out in a special sulfur dioxide (Kesternich) cabinet and has the aim to predict the long term performance of the recent technology by simulating the effect of acid rain or other acidic environments.

Conditions

Samples are placed in a chamber exposed to atomized SO2 and distilled water solution (600 ppm SO₂)

Cycle

8 h @ 1.67 °C (35 °F)

Result

NO YELLOWING - NO LOSS OF GLOSS

DETERGENTS RESISTANCE

SPOT TEST

This test has the aim to check the resistance of the innovated technology to the direct contact of common de-tergents used for housekeeping (kitchen/bathroom).

Conditions

Product used:

- Lysol
- Downy
- Spray & Wash
- Cleaner 409
- Bleach (ipochlorite 2%)

Cycle

2 h direct contact wet

Result

NO MARKS

DISINFECTANTS RESISTANCE

IMMERSION TEST

This test has the aim to check the resistance of the new technology in particular environments such as swimming pools, saunas, wellness centers, where different disinfectants are used into the water in variable concentrations.

Conditions

Product used:

- Hydrogen Peroxide
- Na Ipochlorite
- (2 % chlorine)

Cycle

2 h direct contact wet

Result

NO MARKS

BOILING WATER RESISTANCE

BOILING WATER TEST

This test has the aim to simulate the led stripe applied near cooking fires or steam baths, where both temperature and steam can be very intense.

Cycle

30 min @ 12,5 cm distance (5")

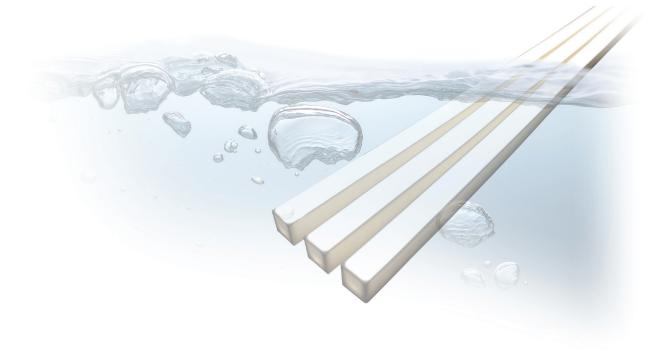
Result

NO CHANGE IN APPEARANCE AND HARDNESS

WATER IMMERSION RESISTANCE

WATER IMMERSION TEST

This test has the aim to check the resistance of the recent technology when immersed into the water at high temperatures. Those conditions can be found in thermal environments, spas, etc.


Cycle

Immersion in water @ 45 °C (133 °F)

Exposure Time

240 h

Result

NO CHANGE IN APPEARANCE AND HARDNESS

SALT SPRAY RESISTANCE

SALT SPRAY TEST

This test has the aim to check the resistance of the recent technology on particular applications such as the naval industry and marine environments.

Conditions

Waterspray 5% NaCl

Cycle

@ 38 °C (100.4 °F)

Exposure Time

1000 h

Result

NO CHANGE IN APPEARANCE AND HARDNESS

TEMPERATURE RESISTANCE

THERMAL CYCLES

THERMAL CYCLES TEST

This test has the aim to check the resistance of the presented technology at low-high temperatures and high humidity.

Those conditions can be found in very cold or very hot climates where LED produced by using our technology could be exposed to thermal shocks up to 80 °C (176 °F).

These cycles also simulate the temperature transition from -40 °C (-40 °F) to +80 °C (176 °F), by giving a very high thermal stress.

Cycle

For **10 times**:

4 h @ 23 °C (73,4 °F) »»» 4 h @ -40 °C (-40 °F) »»» 4 h @ 23 °C (73,4 °F) »»» 4 h @ 95% RH 50 °C (122 °F) »»» 4 h @ 23 °C (73,4 °F) »»» 4 h @ 80 °C (176 °F)

Result

NO CHANGE IN APPEARANCE - NO DEFORMATION - NO LOSS OF GLOSS

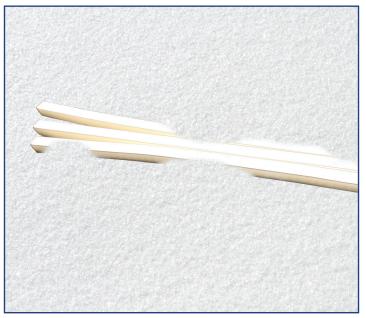
TEMPERATURE RESISTANCE

THERMAL SHOCKS

THERMAL SHOCKS TEST

This test has the aim to check the resistance of the recent technology to the quick passage from very low to very high temperatures.

This phenomenon is particularly frequent in Nordic countries where they use to pour hot water or steams on icy surfaces.


Cycle

For **10 times**:

16 h @ -40 °C (-40 °F) **»»»** water @ 70 °C (158 °F)—

Passage in 10"

Result

NO CHANGE IN APPEARANCE - NO DEFORMATION - NO LOSS OF GLOSS

TEMPERATURE RESISTANCE

HEAT RESISTANCE

HEAT RESISTANCE TEST

This accelerated test has the aim to check the durability of the new technology to very high temperatures, which are higher than those you can normally find. Those conditions can be found for instance in desert areas where temperatures can exceed 50 °C (122 °F).

Cycle

250 h @ 80 °C (176 °F)

Result

NO CHANGE IN APPEARANCE - NO DEFORMATION - NO LOSS OF GLOSS

ABRASION RESISTANCE

TABER TEST ASTM D1044

This test has the aim to check the resistance of the recent technology to abrasion (drive / walk over - steps). It is performed by applying an abrasive wheel and a weight for 1000 cycles.

Conditions

Wheel = CS 10 Weight = 500 g

Cycle

1000 times

Result

MINIMAL WEIGHT LOSS

ABRASION RESISTANCE

CROCKMETER TEST ASTM D6279

This test has the aim to check the wearing of the innovated technology to the continuous passage of cleaning material such us cloths, mops, sponges etc.

Conditions

White cloth = Crock Cloth Felt = M238C4 Green Felt

Cycle

200 times

Result

NO ABRASION MARKS - NO COLOR CHANGE

IMPACT RESISTANCE

STONE CHIPPING TEST - ACCORDING TO ISO 20567-1

This test has the aim to check the resistance of the presented technology to impacts like for instance gravels against the LED surface.

Conditions

500 g chilled iron grit at a pressure of 2 bar

Impact Angle = 90°

Test temperature = 23 °C and -25°C

Result

AVERAGE SIZE OF BREAKS = 0 MM - RATING 1 (NO VISIBLE DAMAGE)

HIGH PRESSURE WASHING RESISTANCE

HIGH PRESSURE WASHING TEST

This test has the aim to check the resistance of the new technology to the washing by high-pressure hot water. It simulates the cleaning usually made on external façades, canopies, undereaves and demonstrates how it's extremely resistant to the pressure impact.

Conditions

Water Temperature 50 °C (122 °F)

Nozzle Tip Water Pressure: 7 MPa (1015 psi)

Distance: 45 cm (17.72 inches)

Exposure Time

30 s

Result

FREE FROM DEFORMATION, LIFTING, PEELING, WRINKLING, CRACKING, SMEARING AND OTHER CHANGES DETRIMENTAL TO USE

FLAME RESISTANCE

IGNITION TO DIRECT FLAME



These tests have the aim to check the resistance of the presented technology to the flame as well as the self-extinguishing degree according to the most restrictive international standards. Any product used for public areas must be **SELF-EXTINGUISHING** and provide **NO RELEASE OF TOXIC SMOKE**.

COMPLIANT WITH: IGNITION TO DIRECT FLAME - UL 94

Conditions

HORIZONTAL BURNING TEST FOR HB CLASSIFICATIONS

Result

DEMAKLED = SELF-EXTINGUISHING = RATE HB

FLAME RESISTANCE

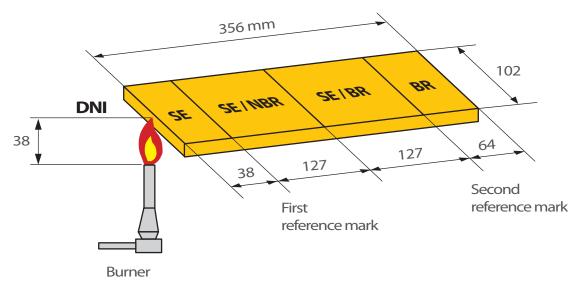
FLAMMABILITY RESISTANCE

These tests have the aim to check the resistance of the new technology to the flame as well as the self-extinguishing degree according to the horizontal specimen.

Any product used for public areas must be **SELF-EXTINGUISHING** and provide **NO RELEASE**

OF TOXIC SMOKE.

COMPLIANT WITH: FMVSS 302


Conditions

Thickness of test specimen as in application

Horizontal specimen

Flame application using a Bunsen burner (15 sec)

Requirements: Maximum rate of flame spread: 102 mm/mi

DNI = does not ignite

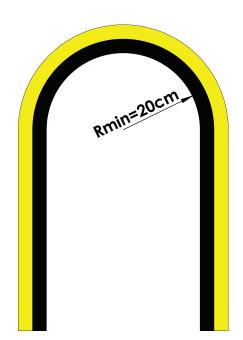
SE = self-extinguishing / no burn rate

SE/BR = self-extinguishing with burn rate

BR = burn rate

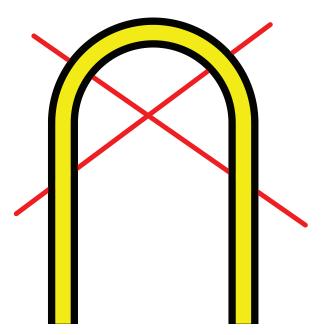
Result

SE = SELF EXTINGUISHING (ON HORIZONTAL SPECIMEN)

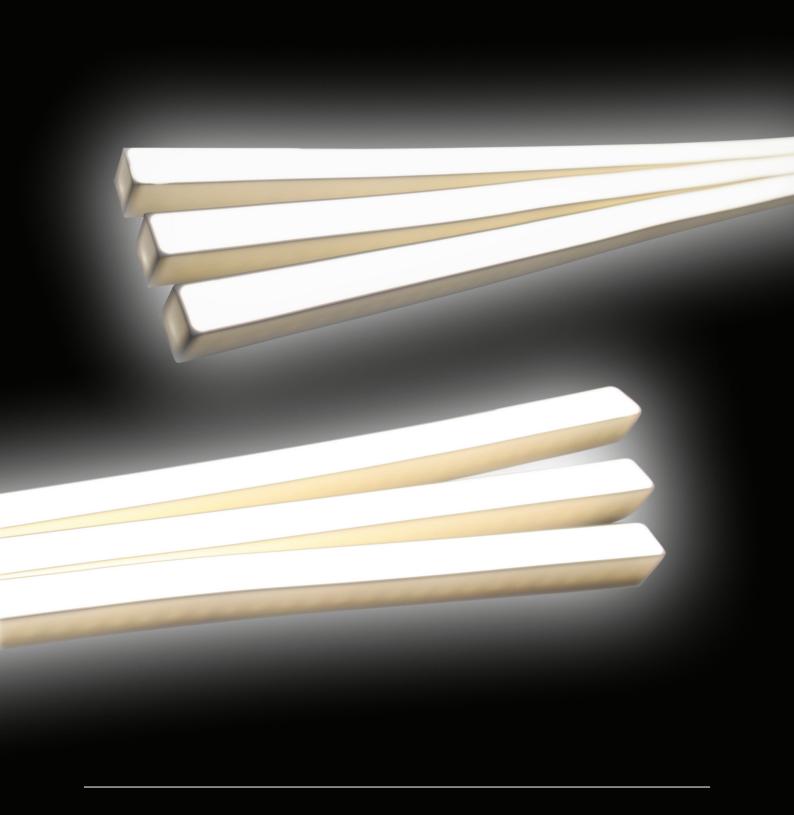


DIRECTIVE AND LAW COMPLIANCE

	DIRECTIVE/LAW	DESCRIPTION	ISSUED BY	LIMITS OF USE FOR
	REACH Regulation no. 1907/2006- 2013	Registration, Evaluation, Authorization for Chemical Substances	Europe	SVHC List (aromatic ammines, phtalates and other substances causing cancer or re- productive damages)
ROHS	RoHS II Directive no. 2011/65/EC (Directive no. 2002/95/EC)	Restriction of use of certain hazardous substances in Electrical/Electronics Equipment	Europe	Lead, Cadmium, Hexavalent Chromium, Mercury, Polybrominated Biphenyls (PBB), Polybrominated Diphenyl Ethers (PBDE)
	ELV Directive no. 2000/53/EC	End of Life Vehicles - restriction of use in Automotives for certain substances, due to recycling purposes	Europe	Heavy Metals, other organic substances (see GADSL – Global Automotive Declarable Substances List – 2009)
	WEEE Directive 2002/96/EC	Waste Eletrical and Electronic Equipment	Europe	
	UNI EN 71-3	Safety of Toys	Europe	Migration Limits for Heavy Metals
	ASTM F963	Safety of Toys	U.S.A.	Migration Limits for Heavy Metals
	Directive no. 2005/84/ EC	Phtalates in Toys	Europe	Phtalates (plasticizers)
	CPSIA 2008 (Consumer Product Safety Improvement Act)	Children's products Safety	U.S.A.	Referring to ASTM F963-07 (Heavy and Toxic Metals- Phtalates- Bisphenol A)
	EC-Directives 89/109; 02/72;97/48; 82/711; 85/572; 76/769 German § 30-§ 31 LMBG (Lebensmittel-und Bedarfsgegenständegesetz)	Contact with food	Europe	Migration Tests and taste related trials
	Directive no. 2005/69/EC	Content of PAHs	Europe	PAHs (polycyclyc Aromatic Hydrocarbons)
	Chemical Substances Control Law 2006	Benzotriazole – Class I Specified Chemical Substances	Japan	Benzotriazole (UV Stabilizer)
	Proposition 65	Content of Chemicals causing cancer or reproductive toxicity	State of California (U.S.A.)	See List Sept.11,2009
	Directive no. 2006/122/ECOF	restrictions on the marketing and use of certain dangerous substances and preparations	Europe	PFOS (perfluorooctane sulfonates)


BENDING DIRECTIONS

Bending in this direction is


ALLOWED

minimum radius = 20cm

Bending in this direction is NOT ALLOWED will damage led PCB and result loss of warranty

LEDS-ON™ www.ledson.eu

Przemysłowa 3 Blizne Łaszczyńskiego 05-082 Poland

+48 725590651 (ENG)

+48 663009610 (FR, ENG)

+48 783238627 (ES)

www.ledson.eu